
3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General

Timon Hertli
Institute for Theoretical Computer Science

Department of Computer Science
ETH Zürich

Zürich, Switzerland
Email: timon.hertli@inf.ethz.ch

Abstract—The PPSZ algorithm by Paturi, Pudlák, Saks, and
Zane [7] is the fastest known algorithm for Unique k-SAT,
where the input formula does not have more than one satisfying
assignment. For k ≥ 5 the same bounds hold for general k-SAT.
We show that this is also the case for k = 3, 4, using a slightly
modified PPSZ algorithm. We do the analysis by defining a
cost for satisfiable CNF formulas, which we prove to decrease
in each PPSZ step by a certain amount. This improves our
previous best bounds with Moser and Scheder [2] for 3-SAT
to O(1.308n) and for 4-SAT to O(1.469n).

Keywords-satisfiability, exponential time, algorithm, 3-SAT

I. INTRODUCTION

k-SAT and especially 3-SAT is one of the most promi-
nent NP-complete problems. While a polynomial algorithm
seems very unlikely, much effort has been put into finding
“moderately exponential algorithms”, i.e. algorithms running
in time O(cn) for c < 2, where n denotes the number
of variables of the input formula. Unique k-SAT is the
variant of the k-SAT problem where the input CNF formula
is promised to have a unique or no satisfying assignment.
In 1998, Paturi, Pudlák, Saks, and Zane [7] presented
a randomized algorithm for Unique 3-SAT that runs in
time O(1.30704n), where n is the number of variables of
the formula. For general 3-SAT, only a running time of
O(1.3633n) could be shown using a complicated analysis.
Shortly afterwards, Schöning [10] proposed a very simple
algorithm with running time O(1.33334n) for 3-SAT. In
2004, Iwama and Tamaki [4] showed that Schöning’s algo-
rithm can be combined with PPSZ to get a running time of
O(1.32373n)1. This bound was subsequently improved by
Rolf [9], Iwama, Seto, Takai, and Tamaki [3] and in [2]
with Moser and Scheder to O(1.32216n), O(1.32113n),
O(1.32065n), respectively. However, these bounds are still
far from the bound O(1.30704n) for Unique 3-SAT.

PPSZ [7] does the following: First, the input formula F
is preprocessed by s-bounded resolution, meaning that all
clauses obtainable by resolution when clauses of size at most
s are considered are added to F. Then PPSZ goes through
the variables in random order. In each step, a variable x is

1Using the new version of [7] immediately gives the bound
O(1.32267n), as stated in [9].

permanently replaced by a Boolean value a as follows: If
there is a clause {x} or {x̄} in the current formula, then
a is chosen accordingly and we call x forced. Otherwise a
is chosen uniformly at random from {0, 1} and we call x
guessed. A PPSZ-run takes polynomial time (for fixed s) and
has exponentially small probability of finding a satisfying
assignment; a randomized algorithm with exponential time
is obtained by independent repetitions.

In Unique k-SAT it was shown that the probability that a
variable is guessed is bounded from above by some quantity
S depending on k and s. Using this, it is not hard to show
that there exists an algorithm for Unique k-SAT running in
time O(2S·n).

A. Our Contribution
We give an analysis of a slightly adapted PPSZ algorithm

that achieves the same bound for k-SAT as for Unique k-
SAT, which gives new bounds for k = 3, 4. The previ-
ously best known bounds from [2] are improved for 3-SAT
from O(1.32065n) to O(1.30704n) and for 4-SAT from
O(1.46928n) to O(1.46899n).

Theorem 1. There exists a randomized algorithm for 3-SAT
with one-sided error that runs in time O(1.30704n).

Theorem 2. There exists a randomized algorithm for 4-SAT
with one-sided error that runs in time O(1.46899n).

Our analysis is directly based on the analysis for Unique
k-SAT of [7]; we do not use the part that considers general
k-SAT. Let F be a satisfiable CNF formula. A variable x of
F is called frozen2 if it has the same value in all satisfying
assignments, and non-frozen otherwise. In [2] it was shown
how to use this distinction to improve PPSZ: A frozen
variable is good for PPSZ, while assigning any Boolean
value to a non-frozen variable preserves satisfiability. Using
a preprocessing step, about half of the variables can be
assumed to be frozen for PPSZ. In this paper, we use a
similar but more fine-grained approach:

When we just look at the formula we start with, we cannot
tell how the number of frozen and non-frozen variables

2We previously called frozen variables critical. Such variables are also
referred to as backbone. Thanks to Ramamohan Paturi for making us aware
of the existing terminology.

changes during the execution. To remedy this we need to
quantify how “good” a formula is at each step of the PPSZ
algorithm. We assign to each satisfiable k-CNF formula F
a cost c(F) with the following properties:

1) The cost is at most S ·n, where S is the upper bound
on the probability that a variable is guessed.

2) For every PPSZ-step where we need to guess, the cost
decreases. If all variables are frozen the cost decreases
by 1 on average; the more variables are non-frozen,
the smaller the decrease is.

Since for every guess the cost decreases, the number of
guesses is bounded on average. We can use this give a
lower bound on the probability that PPSZ finds a satisfying
assignment. We would like this probability to be at least
2−c(F) ≥ 2−S·n, which by a routine argument then gives a
randomized algorithm with running time O(2S·n) (up to a
polynomial factor) as in the unique case.

There are two key ideas we use to obtain this: How to
assign a cost to intermediate CNF formulas, and how to deal
with multiple satisfying assignments. Once this is done, the
result follows from rather straightforward calculations.

To give some intuition on how the cost function works,
we consider the case when there is a unique satisfying
assignment (and all variables are frozen) here. Let F be a
k-CNF satisfied by a unique assignment α. For a variable x,
let pguessed(F, x) be the probability that x is guessed given
PPSZ finds α, averaging over all variable orderings. Here [7]
tells us that pguessed(F, x) ≤ S. Let F′ be obtained by fixing
a random variable y of F to α(y).

We claim that if pguessed(F, x) > 0, then
E[pguessed(x,F′)] ≤ pguessed(F, x) − 1

n . This is seen
as follows: With probability 1

n , y = x. In that case x is
guessed because pguessed(F, x) > 0. Thus x is counted as
guessed in F but not in F′, as x does not occur in F′.
Hence the expectation of pguessed(F′, x) must be smaller
by at least 1

n .
Now we define the cost c(F) to be the sum of

pguessed(F, x) for all variables x of F. We have c(F) ≤ S ·n.
To ensure that c(F) decreases by at least 1 each PPSZ-step,
we need that pguessed(F, x) > 0 for all variables of F. This
requires a slight change in the algorithm: All variables with
pguessed(F, x) = 0 (these are obviously forced) are fixed
immediately, instead of waiting for their step. With this, the
two required properties of the cost are satisfied. It is not hard
to show that here the satisfying assignment is found with
probability at least 2−S·n, e.g. using induction and Jensen’s
inequality.

If there are multiple satisfying assignments, there are
some things to consider. Non-frozen variable might always
be guessed, but we don’t need to worry about assigning
the wrong value to them. This needs to be balanced; it
turns out that we can just give cost S to them. Additionally,
pguessed and hence the cost as defined before is always for a

fixed satisfying assignment, so we need to average over all
satisfying assignments correctly.

In Section II, we review the PPSZ algorithm and prove
its properties we need. In Section III, we introduce the cost
function and do the analysis using the statements of Section
II.

B. Notation

We adapt the notational framework as used in [11]. Let
V be a finite set of propositional variables. A literal l over
x ∈ V is a variable x or a complemented variable x̄. If l = x̄,
then l̄, the complement of l, is defined as x. We assume that
all literals are distinct. A clause over V is a finite set of
literals over pairwise distinct variables from V . A formula
in CNF (Conjunctive Normal Form) is a pair F = (F, V)
where F is a finite set of clauses over V . V is the set of
variables of F and denoted by V (F). We define n(F) :=
|V (F)|, the number of variables of F. If F is understood
from the context, we sometimes write n for n(F). A clause
containing exactly one literal is called a unit clause. We say
that F = (F, V) is a (≤ k)-CNF formula if every clause of
F has size at most k.

Let V be a finite set of variables. A (truth) assignment on
V is a function α : V → {0, 1} which assigns a Boolean
value to each variable. A literal u = x (or u = x̄) is satisfied
by α if α(x) = 1 (or α(x) = 0). A clause is satisfied by
α if it contains a satisfied literal and a formula is satisfied
by α if all of its clauses are. A formula is satisfiable if
there exists a satisfying truth assignment to its variables.
Given a CNF formula F, we denote by sat(F) the set of
assignments on V (F) that satisfy F. k-SAT is the decision
problem of deciding if a (≤ k)-CNF formula has a satisfying
assignment.

Formulas can be manipulated by permanently assigning
values to variables. If F is a given CNF formula and x ∈
V (F) then assigning x 7→ 1 satisfies all clauses containing
x (irrespective of what values the other variables in those
clauses are possibly assigned later) whilst it truncates all
clauses containing x̄ to their remaining literals. Additionally,
x is removed from the variable set of F. We will write
F[x 7→1] (and analogously F[x 7→0]) to denote the formula
arising from doing just this. For notational convenience, we
also write x for x 7→ 1 and x̄ for x 7→ 0, i.e. we write
a literal instead of a variable-value pair. With this, we can
view an assignment α also as the set of literals l that are
satisfied by α. If the literal l corresponds to x 7→ a, we
write F[l] instead of F[x 7→a]. By choosing an element from
a finite set u.a.r., we mean choosing it uniformly at random.
Unless otherwise stated, all random choices are mutually
independent. We denote by log the logarithm to the base 2.
For the logarithm to the base e, we write ln.

II. THE PPSZ ALGORITHM

In this section we present and slightly modify the PPSZ
algorithm from [7]. We also introduce the concept of
frozen variables from [2] (called critical variables there) and
present the statements about the PPSZ algorithm we need
later. To analyze PPSZ, we can ignore unsatisfiable formulas,
as in that case PPSZ never returns a satisfying assignment.
In the rest of this paper we fix an integer k ≥ 3 and let
F = (F, V) be an arbitrary satisfiable (≤ k)-CNF. For our
analysis, we need to change the PPSZ algorithm slightly. The
PPSZ algorithm was defined using a preprocessing step of
s-bounded resolution, i.e. resolution when only considering
clauses of size at most s. We change this to a weaker concept
we call s-implication3. We call a literal s-implied if it is
implied by a subformula with at most s clauses:

Definition 3. Let F = (F, V) be a satisfiable CNF formula.
We say that a literal l is s-implied by F if there is a subset
G of F with |G| ≤ s such that all satisfying assignments of
G = (G,V) set l to 1. For notational convenience, we also
say that a variable x is s-implied, if one of the literals x or
x̄ is s-implied.

We call a CNF formula F s-implication free if no literal
l is s-implied.

Algorithm 1 PPSZ(CNF formula F, integer s)
Choose β u.a.r. from all assignments on V (F)
Choose π u.a.r. from all permutations of V (F)
return PPSZ(F, β, π, s)

Algorithm 2 PPSZ(CNF formula F, assignment β, permu-
tation π, integer s)
V ← V (F)
Let α be a partial assignment over V , initially the empty
assignment
for all x ∈ V , according to π do

while there is an s-implied literal l = y 7→ a in F do
F← F[y 7→a]

α(y)← a
end while
if x ∈ V (F) then

F← F[x 7→β(x)]

α(x)← β(x)
end if

end for
return α

Our analysis requires the following modification of PPSZ:
Instead of processing the variables strictly step by step, we

3The concept of s-implication is from the lecture note draft by Dominik
Scheder.

check after each step for which variables we know the value
(by s-implication) and immediately set these accordingly.
While the change to s-implication makes PPSZ only weaker,
this modification makes the algorithm stronger; our approach
does not work with the PPSZ algorithm proposed in [7],
more on this is written in the conclusion. In the following
we fix s large enough for the bounds we want to show, as
described later. It is easily seen that the PPSZ algorithm we
present runs in polynomial time if s is a constant. We now
give some definitions used in the analysis:

Definition 4 ([7]). Let β and π be chosen randomly as in
PPSZ(F, s). We define the success probability of PPSZ as
the probability that it returns a satisfying assignment.

psuccess(F, s) := Pr
π,β

(PPSZ(F, β, π) ∈ sat(F)) .

Consider a run of PPSZ(F, s). For x ∈ V (F) we call x
forced if the value of x is determined by s-implication; we
call it guessed otherwise. For α ∈ sat(F) we define the
probability that x is guessed w.r.t. α as follows:

pguessed(F, x, α, s) := Pr
π

(x guessed in PPSZ(F, α, π, s)) .

To make notation easier, we extend the notation and allow
α also to be over a variable set W ⊃ V (F); the variables
in W \V (F) will then be ignored. We also allow x 6∈ V (F)
and define in this case pguessed(F, x, α, s) := 0.

Definition 5 ([2]). We say that x ∈ V (F) is frozen if all
satisfiable assignments of F agree on x. We say that x is
non-frozen otherwise.

The probability that a frozen variable is guessed can be
bounded:

Theorem 6 ([7], [2]). If x is a frozen variable,
then pguessed(F, x, α, s) ≤ Sk + εk(s), where Sk :=∫ 1

0
t1/(k−1)−t

1−t dt and ε(s) goes to 0 for s→∞.

Proof Sketch: If there is a unique (or sufficiently
isolated) satisfying assignment, then [7] gives us an upper
bound for the probability that a variable is guessed. In [2],
we have showed that this bound also holds for an arbitrary
satisfying assignment, as long as the variable is frozen. It
is easily seen that this bound holds if we use s-implication
instead of a preprocessing step of s-bounded resolution: In
the analysis of [7], so-called critical clause trees are used to
bound pguessed. The only clauses D used in the proof there
are these with a resolution deduction using at most m clauses
of F with size at most k each, for some appropriately chosen
constant m. Then D can be obtained by (m · k)-bounded
resolution from F. This also means that D is implied by
at most m clauses. If we restrict F to some literals and
obtain F′, then the clause D restricted to these literals is
now implied by at most m clauses of F′. Hence appearance

of a unit clause in the algorithm of [7] now becomes s-
implication of a literal here for all unit clauses considered
in the analysis of [7].

For k = 3, one can show that S3 = 2 ln 2− 1. For small
k, Sk and 2Sk are approximately (rounded up):

k Sk 2Sk

3 0.3862944 1.307032
4 0.5548182 1.468984
5 0.6502379 1.569427
6 0.7118243 1.637874

In [7] it was shown using Jensen’s inequality how to use
a bound for the probability that a variable is guessed to give
an upper bound for the running time of Unique k-SAT. For
k ≥ 5, the same bound holds also for k-SAT using a more
elaborate argument.

Theorem 7 ([7]). For ε > 0, there exists a randomized
algorithm for Unique k-SAT with one-sided error that runs
in time O(2Skn+εn). For k ≥ 5, this is also true for k-SAT.

In this paper we prove that for k-SAT we have the same
bound as Unique k-SAT for all k. For k ≥ 5, this can be seen
as an alternative proof for general k-SAT. Note however that
because we immediately fix implied variables, the algorithm
is slightly different. In the remainder of this section, we will
introduce additional notation and state some properties of
PPSZ we will need later.

Definition 8. We denote the non-frozen variables of F
by VN(F) and set nN(F) := |VN(F)|. We denote the
frozen variables by VF(F) and set nF(F) := |VF(F)|. The
satisfying literals, denoted by SL(F), are the literals l over
V (F) s.t. F[l] is satisfiable.

The satisfying literals consist of all literals over non-
frozen variables, and for each frozen variable of the literal
that corresponds to the satisfying assignments of F. It
follows that |SL(F)| = 2nN(F) + nF(F).

The following alternative definition of PPSZ(F, s) is
easily seen to be the same algorithm. We will use this later
to bound psuccess(F, s).

Observation 9. We can alternatively characterize
PPSZ(F, s) as follows: We first set all s-implied literals
in F accordingly, and let α be the assignment consisting
of these literals. F is now s-implication free. If n(F) = 0,
then we return α. Otherwise we choose x from V (F) u.a.r.
and a from {0, 1} u.a.r. and let l := x 7→ a. Then we run
PPSZ(F[l], s) and combine the returned assignment with
α ∪ {l}.

It follows that if F is s-implication free and if n(F) ≥ 1,
then

psuccess(F, s) =
1

2n

∑
l∈SL(F)

psuccess(F
[l], s).

We need two statements about pguessed for our proof.
The first tells us that if we restrict F to a literal of α the
probability that x is guessed w.r.t. α cannot increase.

Lemma 10. For l ∈ α and α ∈ sat(F), we have
pguessed(F[l], x, α, s) ≤ pguessed(F, x, α, s).

Proof: Let l = y 7→ α(y). Assume x is s-implied
in PPSZ(F, α, π, s). Let π′ be the permutation obtained
by removing y from π. We claim that x is s-implied
in PPSZ(F [l], α, π′, s): Consider the clause set G that s-
implies x in PPSZ(F, α, π, s). It follows from the def-
inition of s-implication that restricting G to l gives a
clause set that s-implies x, and hence x is s-implied in
PPSZ(F [l], α, π′, s). The statement is now easily seen, as π′

has the distribution of a permutation uniformly at random
chosen from all permutations on V (F) \ {y}.

The second statement allows us to relate the probability
that a variable x of F is guessed to the probability that
x is guessed if F is restricted by a random literal of α.
Intuitively, assume we have an upper bound for pguessed.
With some probability, x is guessed right now. Hence if x
is not guessed right now, the probability to be guessed in
the remainder must slightly decrease.

Lemma 11. For α ∈ sat(F) and x ∈ V (F) s.t. x is not
s-implied, we have

pguessed(F, x, α, s)− 1

n(F)
=

1

n(F)

∑
l∈α

pguessed(F[l], x, α, s).

Proof: Let π be a random permutation on V (F) and let
y be the variable that comes first in π. We have by definition

pguessed(F, x, α, s) = Pr
π

(x guessed in PPSZ(F, α, π, s)) .

By the law of total probability, this is

Ey

[
Pr
π

(x guessed in PPSZ(F, α, π, s) | y first in π)
]
.

If x = y, then x is always guessed, as x is not s-implied. If
x 6= y, then the probability under the expectation is easily
seen to be pguessed(F[y 7→α(y)], x, α, s). Writing the expecta-
tion as a sum and using that pguessed(F[y 7→α(y)], y, α, s) is
defined as 0 gives us

pguessed(F, x, α, s) =

Pr
y

[x = y]1+Pr
y

[x 6= y]
1

n(F)− 1

∑
l∈α

pguessed(F[l], x, α, s).

Trivially Pry[x = y] = 1
n(F) and Pry[x 6= y] = n(F)−1

n(F) ; the
statement follows now easily.

III. ANALYSIS USING A COST FUNCTION

To define the cost function, we first need to give a proba-
bility distribution on the set of all satisfying assignments of
a CNF formula. We do this by defining a random process
that repeatedly picks a satisfying literal:

Definition 12. We define the random process AssignSL(F)
that produces an assignment on V (F) as follows: Start with
the empty assignment α, and repeat the following step until
V (F) = ∅: Choose a satisfying literal l ∈ SL(F) and add l
to α; then let F← F[l]. At the end, output α.

Let α be an assignment on V (F). Then p(F, α) is defined
as the probability that AssignSL(F) returns α. If α is
defined on some W ⊃ V (F), p(F, α) is defined as the
probability that AssignSL(F) returns α restricted to V (F).

From the definition we observe the following:

Observation 13. AssignSL(F) always returns a satisfying
assignment of F . Furthermore p(F, α) defines a probability
distribution on sat(F). If n(F) = 0, then p(F, α) = 1.
Otherwise we have the relation

p(F, α) =
1

|SL(F)|
∑
l∈α

p(F[l], α).

Note that this distribution is not the uniform distribution:
As an example consider the CNF formula corresponding to
x∨ y. The probability that both x and y are set to 1 is 1/4,
while the probability that exactly one of x and y is set to 0
is 3/8 each.

Using the probability distribution p(F, α), we define a
cost function on satisfiable k-CNF formulas. In the following
fix an integer s ≥ 0 and let S := Sk − εk(s) s.t.
pguessed(F, x, α, s) ≤ S for all satisfiable k-CNF F where
x is frozen, as in Theorem 6.

Definition 14. For a (≤ k)-CNF formula F with variable
set V (F) we define the cost of x in F as

c(F, x) :=


0 , x 6∈ V (F)

S , x ∈ VN(F)∑
α∈sat(F)

p(F, α)pguessed(F, x, α, s) , x ∈ VF(F)

We define the cost of F as c(F) :=
∑
x∈V (F) c(F, x).

The cost of a variable that does not occur in the formula
is set to 0 for notational convenience. It follows from the
definition that c(F, x) ≤ S and hence c(F) ≤ n(F)S. The
cost function gives a lower bound on the success probability
of PPSZ:

Theorem 15. psuccess(F, s) ≥ 2−c(F).

To obtain Theorems 1 and 2, we choose s such that
εk(s) becomes small enough and 2S < 1.30704 for 3-
SAT and 2S < 1.46899 for 4-SAT. By O(2Sn) independent

repetitions of PPSZ, the claimed randomized exponential
algorithm can then be obtained by a routine argument. In
the remainder of this section, we prove Theorem 15. We
need the following lemma about p(F, α):

Lemma 16. For l ∈ α, we have p(F[l], α) ≥ p(F, α). If
l is over a frozen variable, then p(F[l], α) = p(F, α), and
c(F[l]) ≤ c(F).

Proof: Consider AssignSL(F) given that l is chosen at
some point of time, let α′ denote the output. The distribution
of α′ \ {l} is the same as the output of AssignSL(F[l]),
as is easily checked by induction. If l is not chosen in
AssignSL(F), then the output is never α. Hence the prob-
ability that AssignSL(F[l]) returns α \ {l} is at least the
probability that AssignSL(F) returns α. This proves the first
statement. If l is over a frozen variable, then in AssignSL(F)
l must be chosen at some point, and equality holds. The
inequality on the costs now follows from Lemma 10.

If F is s-implication free the cost decreases by a certain
amount depending on how many variables are frozen and
non-frozen:

Theorem 17. Suppose F is s-implication free. For l chosen
u.a.r from SL(F), we have

El[c(F
[l])] ≤ c(F)− nN(F)

2S

|SL(F)|
− nF(F)

1

|SL(F)|
.

If all variables are frozen, the cost decreases by 1. If all
variables are non-frozen, the cost decreases by S < 1. We
will prove Theorem 17 later and use it now to prove Theorem
15:

Proof of Theorem 15: We prove psuccess(F, s) ≥
2−c(F) by induction on n(F). If n(F) = 0, the statement
is trivial. Assume the statement holds for formulas with
less than n(F) variables, so that for l ∈ SL(F), we have
psuccess(F

[l]) ≥ 2−c(F
[l]). If F is not s-implication free, then

let l be the first s-implied literal fixed in PPSZ such that
psuccess(F) = psuccess(F

[l]). The literal l must be over a
frozen variable, and from the last statement of Lemma 16
we have c(F) ≥ c(F[l]) and hence 2−c(F

[l]) ≥ 2−c(F) and
using the induction hypothesis we are done.

Now assume that F is s-implication free. Using Observa-
tion 9 and the induction hypothesis gives us

psuccess(F, s) =

1

2n(F)

∑
l∈SL(F)

psuccess(F
[l], s) ≥ 1

2n(F)

∑
l∈SL(F)

2−c(F
[l]).

If we choose l ∈ SL(F) u.a.r. we can write the sum as an
expectation and then use Jensen’s inequality and obtain

psuccess(F, s) ≥
|SL(F)|
2n(F)

El

[
2−c(F

[l])
]
≥

|SL(F)|
2n(F)

2−El[c(F
[l])] = 2log(

|SL(F)|
2n(F)

)−El[c(F
[l])].

To prove the statement, we need to show that the exponent
is at least −c(F), i.e.

L := log

(
|SL(F)|
2n(F)

)
−El[c(F

[l])] + c(F) ≥ 0.

We bound the left-hand with Theorem 17 and obtain by
canceling c(F)

L = log

(
|SL(F)|
2n(F)

)
+ nN(F)

2S

|SL(F)|
+ nF(F)

1

|SL(F)|

= log

(
|SL(F)|
n(F)

)
− 1 + nN(F)

2S

|SL(F)|
+ nF(F)

1

|SL(F)|
.

Using twice |SL(F)| = nF(F) + 2nN(F), this is

log

(
1 +

nN(F)

n(F)

)
+ nN(F)

2S

|SL(F)|
− 2nN(F)

1

|SL(F)|
.

With the inequality log(1+x) ≥ log(e) x
1+x (which is easily

seen by writing log(1 + x) as an integral), we have

L ≥ log(e)

nN(F)
n(F)

|SL(F)|
n(F)

+ nN(F)
2S

|SL(F)|
− 2nN(F)

1

|SL(F)|

= log(e)
nN(F)

|SL(F)|
− (2− 2S)

nN(F)

|SL(F)|
.

It can be easily seen from the definition that Sk increases
for larger k. Hence S ≥ S3 = 2 ln 2 − 1 ≈ 0.3863 and
(2 − 2S) ≤ 4 − 4 ln 2 < 1.23 < 1.44 < log(e), which
implies L ≥ 0 and completes the proof.

It is interesting to see that we still have some leeway in
the last step. One checks that log(e) = (2− 2 S3

1+S3
) which

means that our method works as long as the upper bound
S on the probability that a frozen variable is guessed is at
least S3

1+S3
≈ 0.2787, corresponding to an algorithm with

running time roughly O(1.214n).

A. Remaining Proofs

We now need to prove Theorem 17. The theorem follows
from the following two lemmas:

Lemma 18. If x ∈ VN(F), then for l chosen u.a.r from
SL(F) we have

El[c(F
[l], x)] ≤ c(F, x)− 2S

|SL(F)|
.

Note that this lemma holds even if F has s-implied
literals. However, we only use it if F is s-implication free.

Proof: x is non-frozen, so by definition c(F, x) = S.
As the cost of any variable is at most S, we have

El[c(F
[l], x)] ≤ S Pr

l
[x ∈ V (F[l])] =

S Pr
l

[l is not over x] = S
|SL(F)| − 2

|SL(F)|
.

Lemma 19. If x ∈ VF(F) and not s-implied, then for l
chosen u.a.r from SL(F) we have

El[c(F
[l], x)] ≤ c(F, x)− 1

|SL(F)|
.

Proof: By writing the expectation as a sum and insert-
ing the definition, we have

El[c(F
[l], x)] =

1

|SL(F)|
∑

l∈SL(F)

∑
α′∈sat(F[l])

p(F[l], α′)pguessed(F[l], x, α′, s).

Note that we have extended p and pguessed such that also
assignments over a set W ⊃ V (F[l]) are allowed and the
additional variables are ignored. We now claim that we can
exchange the sums and get

El[c(F
[l], x)] =

1

|SL(F)|
∑

α∈sat(F)

∑
l∈α

p(F[l], α)pguessed(F[l], x, α, s).

To prove this, we need to show that there is a bijection
between the set {(α, l) | α ∈ sat(F), l ∈ α} and the set
{(l, α′) | l ∈ SL(F), α′ ∈ F[l]} s.t. α = α′ on V (F[l]). One
can easily check that f(α, l) := (l, α\{l}) with f−1(l, α′) =
(α′ ∪ {l}, l) is such a bijection.

Now the outer sum is over α ∈ sat(F), as in the definition
of c(F, x). Hence it is sufficient to prove that for all α ∈
sat(F) we have

1

|SL(F)|
∑
l∈α

p(F[l], α)pguessed(F[l], x, α, s) ≤

p(F, α)pguessed(F, x, α, s)− p(F, α)
1

|SL(F)|
.

We multiply this by SL(F) and divide it by p(F, α) (which
is trivially positive) and get equivalently

T :=
∑
l∈α

p(F[l], α)

p(F, α)
pguessed(F[l], x, α, s) ≤

|SL(F)|pguessed(F, x, α, s)− 1. (1)

It remains to show (1). We bound the left-hand side T . First
we split it into two sums:

T =
∑
l∈α

pguessed(F[l], x, α, s)+

∑
l∈α

p(F[l], α)− p(F, α)

p(F, α)
pguessed(F[l], x, α, s).

Now we use Lemma 11 multiplied by n(F) on the first sum.
By Lemma 16 all summands of the second sum are positive,

so we can use Lemma 10 to bound pguessed(F[l], x, α, s)
from above by pguessed(F, x, α, s). We obtain

T ≤ n(F)pguessed(F, x, α, s)− 1+∑
l∈α

p(F[l], α)− p(F, α)

p(F, α)
pguessed(F, x, α, s).

Observation 13 tells us that
∑
l∈α p(F

[l], α) =
|SL(F)|p(F, α), and so∑

l∈α

p(F[l], α)− p(F, α)

p(F, α)
= |SL(F)| − n(F).

Therefore

T ≤ n(F)pguessed(F, x, α, s)− 1+

(|SL(F)| − n(F))pguessed(F, x, α, s),

which is equal to |SL(F)|pguessed(F, x, α, s)− 1 and hence
(1) holds.

Theorem 17 can now be easily proved:
Proof of Theorem 17: We need to show that F is s-

implication free and l chosen u.a.r from SL(F), we have

El[c(F
[l])] ≤ c(F)− nN(F)

2S

|SL(F)|
− nF(F)

1

|SL(F)|
.

Using the definition of the cost we obtain

El[c(F
[l])] = El

 ∑
x∈V (F[l])

c(F[l], x)

 =

El

 ∑
x∈V (F)

c(F[l], x)

 .
Then linearity of expectation gives

El[c(F
[l])] =

∑
x∈V (F)

El[c(F
[l], x)].

Now we can plug in Lemmas 18 and 19 to get

El[c(F
[l])] ≤∑

x∈V (F)

c(F, x)− nN(F)
2S

|SL(F)|
− nF(F)

1

|SL(F)|
.

Using the definition of c(F) gives the statement.

IV. CONCLUSION

We have shown an analysis of a slightly adapted PPSZ
algorithm that gives the same bound for general k-SAT as
for Unique k-SAT. For k ≥ 5, this was already known, but
our analysis might be considered more intuitive. For k = 3
and for k = 4 this gives improved running time bounds; for
k = 3 the bound significantly improves from O(1.32065n)
to O(1.30704n). The fastest known randomized algorithm
for 3-SAT is now again rather simple compared with the

algorithm proposed in [2]. It is noteworthy that this is the
first algorithm for 3-SAT that is faster than, but independent
of Schöning’s algorithm [10]. The best known bounds for
Unique k-SAT and k-SAT match now, but it is still an open
question if this holds in general, as conjectured by Calabro
et al. [1].

For deterministic algorithms, the picture is a bit different.
Recently Schöning’s algorithm has been fully derandom-
ized by Moser and Scheder [6] yielding a deterministic
algorithm for 3-SAT running in time O(1.33334n). This
has been improved very recently by Makino, Tamaki, and
Yamamoto [5] to O(1.3303n). For Unique k-SAT, PPSZ
has been fully derandomized by Rolf in 2005 [8], giving
a deterministic algorithm for Unique 3-SAT running in
time O(1.30704n), as in the randomized version. Our new
approach to generalize from Unique k-SAT to k-SAT in
PPSZ might be used to derandomize PPSZ for general k-
SAT.

We have adapted PPSZ slightly by immediately using s-
implied literals. In the original PPSZ, s-implied variables
are good because they behave like non-frozen variables in
the sense that restricting to them preserves satisfiability.
However, while non-frozen variables still have an expected
cost reduction of 2S

|SL(F)| ≈
0.773
|SL(F)| , the cost reduction of s-

implied variables is 0, as they are guessed with probability
0 and hence already have cost 0. Our approach needs cost
reduction at least 2−log(e)

SL(F)| ≈
0.557
|SL(F)| . It might be interesting

to check if our approach can be improved to overcome this
problem and accommodate the original PPSZ algorithm.

In the end, our analysis works because (2 − 2S) ≤ 4 −
4 ln 2 < 1.23 < 1.44 < log(e). Is there another way to
do the analysis without resorting to numerical comparisons?
Does this inequality have any significance or is it just lucky
coincidence?

ACKNOWLEDGEMENTS

I am very grateful to Heidi Gebauer, Dominik Scheder,
and Emo Welzl for checking my ideas. Special thanks go
to Robin Moser for continuous assistance in realizing this
paper.

REFERENCES

[1] C. Calabro, R. Impagliazzo, V. Kabanets, and
R. Paturi, “The complexity of Unique k-SAT: an
isolation lemma for k-CNFs,” J. Comput. System Sci.,
vol. 74, no. 3, pp. 386–393, 2008. [Online]. Available:
http://dx.doi.org/10.1016/j.jcss.2007.06.015

[2] T. Hertli, R. A. Moser, and D. Scheder, “Improving PPSZ
for 3-SAT using critical variables,” in Proc. of STACS 2011,
2011, pp. 237–248.

[3] K. Iwama, K. Seto, T. Takai, and S. Tamaki, “Improved
randomized algorithms for 3-SAT,” in Algorithms and Com-
putation, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, vol. 6506, pp. 73–84.

[4] K. Iwama and S. Tamaki, “Improved upper bounds for 3-
SAT,” in Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. New York: ACM, 2004,
pp. 328–329 (electronic).

[5] K. Makino, S. Tamaki, and M. Yamamoto, “Derandomizing
HSSW algorithm for 3-SAT,” CoRR, vol. abs/1102.3766,
2011.

[6] R. A. Moser and D. Scheder, “A full derandomization of
Schoening’s k-SAT algorithm,” in Proceedings of the 43rd
annual ACM Symposium on Theory of Computing. ACM,
2011, pp. 245–252.

[7] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, “An improved
exponential-time algorithm for k-SAT,” J. ACM, vol. 52,
no. 3, pp. 337–364 (electronic), 2005. [Online]. Available:
http://dx.doi.org/10.1145/1066100.1066101

[8] D. Rolf, “Derandomization of PPSZ for Unique-k-SAT,” in
Theory and applications of satisfiability testing, ser. Lecture
Notes in Comput. Sci. Berlin: Springer, 2005, vol. 3569, pp.
216–225.

[9] ——, “Improved Bound for the PPSZ/Schöning-Algorithm
for 3-SAT,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 1, pp. 111–122, 2006.

[10] U. Schöning, “A probabilistic algorithm for k-SAT
and constraint satisfaction problems,” in 40th Annual
Symposium on Foundations of Computer Science
(New York, 1999). IEEE Computer Soc., Los
Alamitos, CA, 1999, pp. 410–414. [Online]. Available:
http://dx.doi.org/10.1109/SFFCS.1999.814612

[11] E. Welzl, “Boolean satisfiability – combina-
torics and algorithms (lecture notes),” 2005,
www.inf.ethz.ch/˜emo/SmallPieces/SAT.ps.

